Linear equations over multiplicative groups, recurrences, and mixing I

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Linear Equations over Multiplicative Groups , Recurrences , and Mixing I

Let K be a field of positive characteristic. When V is a linear variety in K and G is a finitely generated subgroup of K∗, we show how to compute the set V ∩ G effectively using heights. We calculate all the estimates explicitly. A special case provides the effective solution of the S-unit equation in n variables. 2000 MSC codes. 11D04, 11D72, 11G35, 11G50, 14G25.

متن کامل

Linear Equations over Multiplicative Groups, Recurrences, and Mixing II

Let u1, . . . , um be linear recurrences with values in a field K of positive characteristic p. We show that the set of integer vectors (k1, . . . , km) such that u1(k1) + · · ·+ um(km) = 0 is p-normal in a natural sense generalizing that of the first author, who proved the result for m = 1. Furthermore the set is effectively computable if K is. We illustrate this with an example for m = 4. We ...

متن کامل

Diophantine Equations Related with Linear Binary Recurrences

In this paper we find all solutions of four kinds of the Diophantine equations begin{equation*} ~x^{2}pm V_{t}xy-y^{2}pm x=0text{ and}~x^{2}pm V_{t}xy-y^{2}pm y=0, end{equation*}% for an odd number $t$, and, begin{equation*} ~x^{2}pm V_{t}xy+y^{2}-x=0text{ and}text{ }x^{2}pm V_{t}xy+y^{2}-y=0, end{equation*}% for an even number $t$, where $V_{n}$ is a generalized Lucas number. This pape...

متن کامل

Linear equations over finite abelian groups

One of the oldest problems in algebra is the solution of a system of linear equations over certain domains. The Gaussian elimination algorithm provides an effective solution over fields. The Smith normal form algorithm yields a method over the integers. Here we consider another variation of this theme. Let A be a finite (additive) abelian group, let αi,j ∈ End(A) for 1 ≤ i ≤ n and 1 ≤ j ≤ m and...

متن کامل

Combinatorial Recurrences and Linear Difference Equations

In this work we introduce the triangular arrays of depth greater than 1 given by linear recurrences, that generalize some well-known recurrences that appear in enumerative combinatorics. In particular, we focussed on triangular arrays of depth 2, since they are closely related to the solution of linear three–term recurrences. We show through some simple examples how these triangular arrays appe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the London Mathematical Society

سال: 2012

ISSN: 0024-6115

DOI: 10.1112/plms/pdr040